Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Exerc Sci ; 17(1): 220-234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665161

RESUMEN

Electroencephalography (EEG) allows for the evaluation of real time changes in brain (electrocortical) activity during exercise. A few studies have examined changes in electrocortical activity using stationary cycling, but the findings have been mixed. Some of these studies have found increases in brain activity following exercise, while others have found decreases in brain activity following exercise. Hence, it is of importance to identify post-exercise changes in brain activity. Sixteen healthy, untrained subjects (8 males; 8 females) participated in the study. All 16 participants performed a graded exercise test (GXT) to volitional exhaustion on an upright cycle ergometer. Continuous EEG recordings were sampled before (PRE) and immediately following (IP) the GXT. Regions of interest were primarily the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and left and right motor cortex (MC). In the DLPFC, a frontal asymmetry index was also identified. There was a statistically significant increase in theta power in the DLPFC, VLPFC, and left and right MC from PRE to IP (all p < 0.05). There was also a shift towards right hemisphere asymmetry at the IP time point in the DLPFC (p < 0.05). Finally, there was an increase in alpha power from PRE to IP in the right MC (p < 0.05). EEG could prove to be an important way to measure the effects of central fatigue on brain activity before and immediately following exercise.

2.
Brain Commun ; 6(2): fcae080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495306

RESUMEN

Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.

3.
Adv Sci (Weinh) ; 11(10): e2303516, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38155460

RESUMEN

Impaired cerebrovascular function contributes to the genesis of age-related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n = 21, 33.2±7.0 years) and aged (n = 30, 75.9±6.9 years) participants are assessed. To determine NVC responses and functional connectivity (FC) during a working memory (n-back) paradigm, oxy- and deoxyhemoglobin concentration changes from the frontal cortex using functional near-infrared spectroscopy are recorded. NVC responses are significantly impaired during the 2-back task in aged participants, while the frontal networks are characterized by higher local and global connection strength, and dynamic FC (p < 0.05). Both impaired NVC and increased FC correlate with age-related decline in accuracy during the 2-back task. These findings suggest that task-related brain states in older adults require stronger functional connections to compensate for the attenuated NVC responses associated with working memory load.


Asunto(s)
Disfunción Cognitiva , Acoplamiento Neurovascular , Humanos , Anciano , Acoplamiento Neurovascular/fisiología , Encéfalo/fisiología , Lóbulo Frontal
4.
PLoS One ; 18(8): e0289508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37535668

RESUMEN

INTRODUCTION: Mild cognitive impairment (MCI) is a prodromal stage to dementia, affecting up to 20% of the aging population worldwide. Patients with MCI have an annual conversion rate to dementia of 15-20%. Thus, conditions that increase the conversion from MCI to dementia are of the utmost public health concern. The COVID-19 pandemic poses a significant impact on our aging population with cognitive decline as one of the leading complications following recovery from acute infection. Recent findings suggest that COVID-19 increases the conversion rate from MCI to dementia in older adults. Hence, we aim to uncover a mechanism for COVID-19 induced cognitive impairment and progression to dementia to pave the way for future therapeutic targets that may mitigate COVID-19 induced cognitive decline. METHODOLOGY: A prospective longitudinal study is conducted at the University of Oklahoma Health Sciences Center. Patients are screened in the Department of Neurology and must have a formal diagnosis of MCI, and MRI imaging prior to study enrollment. Patients who meet the inclusion criteria are enrolled and followed-up at 18-months after their first visit. Visit one and 18-month follow-up will include an integrated and cohesive battery of vascular and cognitive measurements, including peripheral endothelial function (flow-mediated dilation, laser speckle contrast imaging), retinal and cerebrovascular hemodynamics (dynamic vessel retinal analysis, functional near-infrared spectroscopy), and fluid and crystalized intelligence (NIH-Toolbox, n-back). Multiple logistic regression will be used for primary longitudinal data analysis to determine whether COVID-19 related impairment in neurovascular coupling and increases in white matter hyperintensity burden contribute to progression to dementia.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Demencia , Humanos , Anciano , Encéfalo , Estudios Prospectivos , Estudios Longitudinales , Pandemias , Progresión de la Enfermedad , COVID-19/epidemiología , Disfunción Cognitiva/epidemiología , Demencia/epidemiología , Pruebas Neuropsicológicas , Estudios Observacionales como Asunto
5.
Ageing Res Rev ; 88: 101962, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224885

RESUMEN

Cerebral small vessel disease (CSVD) is the leading cause of vascular cognitive impairment and is associated with COVID-19. However, contributing factors that often accompany CSVD pathology in COVID-19 patients may influence the incidence of cerebrovascular complications. Thus, a mechanism linking COVID-19 and CSVD has yet to be uncovered and differentiated from age-related comorbidities (i.e., hypertension), and medical interventions during acute infection. We aimed to evaluate CSVD in acute and recovered COVID-19 patients and to differentiate COVID-19-related cerebrovascular pathology from the above-mentioned contributing factors by assessing the localization of microbleeds and ischemic lesions/infarctions in the cerebrum, cerebellum, and brainstem. A systematic search was performed in December 2022 on PubMed, Web of Science, and Embase using a pre-established search criterion related to history of, or active COVID-19 with CSVD pathology in adults. From a pool of 161 studies, 59 met eligibility criteria and were included. Microbleeds and ischemic lesions had a strong predilection for the corpus callosum and subcortical/deep white matter in COVID-19 patients, suggesting a distinct CSVD pathology. These findings have important implications for clinical practice and biomedical research as COVID-19 may independently, and through exacerbation of age-related mechanisms, contribute to increased incidence of CSVD.


Asunto(s)
COVID-19 , Enfermedades de los Pequeños Vasos Cerebrales , Hipertensión , Sustancia Blanca , Humanos , COVID-19/complicaciones , COVID-19/epidemiología , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Sustancia Blanca/patología , Hipertensión/patología , Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/patología , Imagen por Resonancia Magnética
6.
Front Aging Neurosci ; 14: 1052451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466602

RESUMEN

Introduction: Advanced methods of gait research, including approaches to quantify variability, and orderliness/regularity/predictability, are increasingly used to identify patients at risk for the development of cognitive impairment. Cerebral small vessel disease (CSVD) is highly prevalent in older adults and is known to contribute to the development of vascular cognitive impairment and dementia (VCID). Studies in preclinical models demonstrate that subclinical alterations precede CSVD-related cognitive impairment in gait coordination. In humans, CSVD also associates with gait abnormalities. The present study was designed to test the hypothesis that increased gait variability and gait asymmetry predict a decline in cognitive performance in older adults with CSVD. Methods: To test this hypothesis, we compared cognitive performance and gait function in patients with CSVD (age: 69.8 ± 5.3 years; n = 11) and age- and sex-matched control participants (age: 70.7 ± 5.8 years; n = 11). Based on imaging findings, patients with CSVD were identified [presence of white matter hyperintensities plus silent brain infarcts and/or microhemorrhages on magnetic resonance imaging (MRI) assessment]. Cognitive performance was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Gait parameters were measured during the single and dual tasks, during which participants, in addition to the motor task, completed a series of mental arithmetic calculations. Spatial and temporal parameters of gait variability, symmetry, and permutation entropy were determined using a pressure-sensitive gait mat during single and dual cognitive task conditions. Results: Patients with CSVD exhibited lower performance in a visual learning test (p = 0.030) and in a sustained attention test (p = 0.007). CSVD also affected step time variability (p = 0.009) and step length variability (p = 0.017). Step lengths of CSVD participants were more asymmetric (p = 0.043) than that of controls, while the two groups were statistically similar regarding step time symmetry and entropy of step time and length. Gait variability was inversely associated with sustained attention, especially among CSVD patients, and this relationship was significantly different between the two groups. The association of sustained attention with gait symmetry was also significantly different between the two groups. Discussion: Our findings provide additional evidence in support of the concept that increased gait variability and asymmetry may predict cognitive impairment in older adults with CSVD.

7.
Biotechnol Bioeng ; 119(9): 2437-2446, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35706349

RESUMEN

Insensitive munitions compounds (IMCs), such as 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), are replacing conventional explosives in munitions formulations. Manufacture and use of IMCs generate waste streams in manufacturing plants and load/assemble/pack facilities. There is a lack of practical experience in executing biodegradation strategies to treat IMCs waste streams. This study establishes a proof-of-concept that bacterial consortia can be designed to mineralize IMCs and co-occurring nitroaromatics in waste streams. First, DNAN, 4-nitroanisole (4-NA), and 4-chloronitrobenzene (4-CNB) in a synthetic DNAN-manufacturing waste stream were biodegraded using an aerobic fluidized-bed reactor (FBR) inoculated with Nocardioides sp. JS 1661 (DNAN degrader), Rhodococcus sp. JS 3073 (4-NA degrader), and Comamonadaceae sp. LW1 (4-CNB degrader). No biodegradation was detected when the FBR was operated under anoxic conditions. Second, DNAN and NTO were biodegraded in a synthetic load/assemble/pack waste stream during a sequential treatment comprising: (i) aerobic DNAN biodegradation in the FBR; (ii) anaerobic NTO biotransformation to 3-amino-1,2,4-triazol-5-one (ATO) by an NTO-respiring enrichment; and (iii) aerobic ATO mineralization by an ATO-oxidizing enrichment. Complete biodegradation relied on switching redox conditions. The results provide the basis for designing consortia to treat mixtures of IMCs and related waste products by incorporating microbes with the required catabolic capabilities.


Asunto(s)
Sustancias Explosivas , Nitrocompuestos , Anisoles/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Biotransformación , Sustancias Explosivas/metabolismo , Nitrocompuestos/metabolismo , Triazoles/metabolismo
8.
Oxid Med Cell Longev ; 2022: 6110226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571254

RESUMEN

Background: Aging is a major risk factor for a range of chronic diseases. Oxidative stress theory of aging has been previously proposed as one of the mechanisms responsible for the age-related decline in organ/tissue function and the development of age-related diseases. Urine contains rich biological information on the health status of every major organ system and can be an important noninvasive source for biomarkers of systemic oxidative stress in aging. Aims: The objective of this cross-sectional study was to validate a novel panel of urinary oxidative stress biomarkers. Methods: Nucleic acid oxidation adducts and oxidative damage markers of lipids and proteins were assessed in urine samples from nondiabetic and currently nonsmoking subjects (n = 198) across different ages (20 to 89 years old). Urinary parameters and chronological age were correlated then the biological age of enrolled individuals was determined from the urinary oxidative stress markers using the algorithm of Klemera and Doubal. Results: Our findings showed that 8-oxo-7,8-deoxyguanosine (8-oxoG), 8-oxo-7,8-dihydroguanosine (8-OHdG), and dityrosine (DTyr) positively correlated with chronological age, while the level of an F2-isoprostane (iPF2 α-VI) correlated negatively with age. We found that 8-oxoG, DTyr, and iPF2 α-VI were significantly higher among accelerated agers compared to nonaccelerated agers and that a decision tree model could successfully identify accelerated agers with an accuracy of >92%. Discussion. Our results indicate that 8-oxoG and iPF2 α-VI levels in the urine reveal biological aging. Conclusion: Assessing urinary biomarkers of oxidative stress may be an important approach for the evaluation of biological age by identifying individuals at accelerated risk for the development of age-related diseases.


Asunto(s)
Envejecimiento , Estrés Oxidativo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/orina , Estudios Transversales , Desoxiguanosina/orina , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
9.
Am J Physiol Heart Circ Physiol ; 322(6): H924-H935, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35333116

RESUMEN

Peripheral artery disease (PAD) is a vascular pathology with high prevalence among the aging population. PAD is associated with decreased cognitive performance, but the underlying mechanisms remain obscure. Normal brain function critically depends on an adequate adjustment of cerebral blood supply to match the needs of active brain regions via neurovascular coupling (NVC). NVC responses depend on healthy microvascular endothelial function. PAD is associated with significant endothelial dysfunction in peripheral arteries, but its effect on NVC responses has not been investigated. This study was designed to test the hypothesis that NVC and peripheral microvascular endothelial function are impaired in PAD. We enrolled 11 symptomatic patients with PAD and 11 age- and sex-matched controls. Participants were evaluated for cognitive performance using the Cambridge Neuropsychological Test Automated Battery and functional near-infrared spectroscopy to assess NVC responses during the cognitive n-back task. Peripheral microvascular endothelial function was evaluated using laser speckle contrast imaging. We found that cognitive performance was compromised in patients with PAD, evidenced by reduced visual memory, short-term memory, and sustained attention. We found that NVC responses and peripheral microvascular endothelial function were significantly impaired in patients with PAD. A positive correlation was observed between microvascular endothelial function, NVC responses, and cognitive performance in the study participants. Our findings support the concept that microvascular endothelial dysfunction and neurovascular uncoupling contribute to the genesis of cognitive impairment in older PAD patients with claudication. Longitudinal studies are warranted to test whether the targeted improvement of NVC responses can prevent or delay the onset of PAD-associated cognitive decline.NEW & NOTEWORTHY Peripheral artery disease (PAD) was associated with significantly decreased cognitive performance, impaired neurovascular coupling (NVC) responses in the prefrontal cortex (PFC), left and right dorsolateral prefrontal cortices (LDLPFC and RDLPFC), and impaired peripheral microvascular endothelial function. A positive correlation between microvascular endothelial function, NVC responses, and cognitive performance may suggest that PAD-related cognitive decrement is mechanistically linked, at least in part, to generalized microvascular endothelial dysfunction and subsequent impairment of NVC responses.


Asunto(s)
Disfunción Cognitiva , Acoplamiento Neurovascular , Enfermedad Arterial Periférica , Anciano , Envejecimiento/fisiología , Arteriolas , Circulación Cerebrovascular/fisiología , Humanos , Acoplamiento Neurovascular/fisiología
10.
Am J Vet Res ; 83(2): 140-146, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34890356

RESUMEN

OBJECTIVE: To calculate the necessary pseudophakic intraocular lens (IOL) power to approximate emmetropia in adult tigers. ANIMALS: 17 clinically normal adult tigers. PROCEDURES: 33 eyes of 17 clinically normal adult tigers underwent routine ophthalmic examination and B-scan ultrasonography while anesthetized for unrelated procedures. Specific ultrasound data (globe measurements and corneal curvature) and estimated postoperative IOL positions were utilized to calculate predicted IOL power by use of Retzlaff and Binkhorst theoretical formulas. Applanation tonometry and refraction were also performed. RESULTS: Mean ± SD axial globe length was 29.36 ± 0.82 mm, preoperative anterior chamber depth was 7.00 ± 0.74 mm, and crystalline lens thickness was 8.72 ± 0.56 mm. Mean net refractive error (n = 33 eyes) was +0.27 ± 0.30 diopters (D). By use of the Retzlaff formula, mean predicted IOL power for the postoperative anterior chamber depth (PACD), PACD - 2 mm, and PACD + 2 mm was 43.72 ± 4.84 D, 37.62 ± 4.19 D, and 51.57 ± 5.72 D, respectively. By use of the Binkhorst equation, these values were 45.11 ± 4.91 D, 38.84 ± 4.25 D, and 53.18 ± 5.81 D, respectively. Mean intraocular pressure for all eyes was 14.7 ± 2.69 mm Hg. CLINICAL RELEVANCE: The calculated tiger IOL was lower than reported values for adult domestic felids. Further studies evaluating actual PACD and pseudophakic refraction would help determine the appropriate IOL power to achieve emmetropia in this species.


Asunto(s)
Lentes Intraoculares , Facoemulsificación , Tigres , Animales , Biometría , Córnea , Lentes Intraoculares/veterinaria , Facoemulsificación/veterinaria , Refracción Ocular , Estudios Retrospectivos
11.
Sci Rep ; 11(1): 20994, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697326

RESUMEN

Sleep deprivation (SD) is a common condition and an important health concern. In addition to metabolic and cardiovascular risks, SD associates with decreases in cognitive performance. Neurovascular coupling (NVC, "functional hyperemia") is a critical homeostatic mechanism, which maintains adequate blood supply to the brain during periods of intensive neuronal activity. To determine whether SD alters NVC responses and cognitive performance, cognitive and hemodynamic NVC assessments were conducted prior to and 24 h post-SD in healthy young male individuals (n = 10, 27 ± 3 years old). Cognition was evaluated with a battery of tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Hemodynamic components of NVC were measured by transcranial Doppler sonography (TCD) during cognitive stimulation, dynamic retinal vessel analysis (DVA) during flicker light stimulation, and functional near infrared spectroscopy (fNIRS) during finger tapping motor task. Cognitive assessments revealed impairments in reaction time and sustained attention after 24 h of SD. Functional NIRS analysis revealed that SD significantly altered hemodynamic responses in the prefrontal cortex and somatosensory cortex during a motor task. NVC-related vascular responses measured by DVA and TCD did not change significantly. Interestingly, TCD detected decreased task-associated cerebral blood flow (CBF) in the right middle cerebral artery in sleep deprived participants. Our results demonstrate that 24 h of SD lead to impairments in cognitive performance together with altered CBF and hemodynamic components of cortical NVC responses.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Circulación Cerebrovascular , Cognición , Hemodinámica , Acoplamiento Neurovascular , Privación de Sueño/complicaciones , Adulto , Estudios de Casos y Controles , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/fisiopatología , Femenino , Humanos , Masculino , Neuronas/metabolismo , Tiempo de Reacción , Espectroscopía Infrarroja Corta , Ultrasonografía Doppler Transcraneal , Adulto Joven
12.
Brain Behav ; 11(8): e02135, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34156165

RESUMEN

Sleep deprivation (SD) is known to be associated with decreased cognitive performance; however, the underlying mechanisms are poorly understood. As interactions between distinct brain regions depend on mental state, functional brain networks established by these connections typically show a reorganization during task. Hence, analysis of functional connectivity (FC) could reveal the task-related change in the examined frontal brain networks. Our objective was to assess the impact of SD on static FC in the prefrontal and motor cortices and find whether changes in FC correlate with changes in neuropsychological scores. Healthy young male individuals (n = 10, 27.6 ± 3.7 years of age) participated in the study. A battery of tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and 48 channel functional near-infrared spectroscopy (fNIRS) measurements were performed before and after 24 hr of SD. Network metrics were obtained by graph theoretical analysis using the fNIRS records in resting state and during finger-tapping sessions. During task, SD resulted in a significantly smaller decrease in the number and strength of functional connections (characterizing FC) in the frontal cortex. Changes in the global connection strengths correlated with decreased performance in the paired association learning test. These results indicate a global impact of SD on functional brain networks in the frontal lobes.


Asunto(s)
Corteza Motora , Espectroscopía Infrarroja Corta , Encéfalo , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Masculino , Privación de Sueño/diagnóstico por imagen
13.
PLoS One ; 16(5): e0250043, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34010279

RESUMEN

Understanding how the brain allocates resources to match the demands of active neurons under physiological conditions is critically important. Increased metabolic demands of active brain regions are matched with hemodynamic responses known as neurovascular coupling (NVC). Several methods that allow noninvasive assessment of brain activity in humans detect NVC and early detection of NVC impairment may serve as an early marker of cognitive impairment. Therefore, non-invasive NVC assessments may serve as a valuable tool to detect early signs of cognitive impairment and dementia. Working memory tasks are routinely employed in the evaluation of cognitive task-evoked NVC responses. However, recent attempts that utilized functional near-infrared spectroscopy (fNIRS) or transcranial Doppler sonography (TCD) while using a similar working memory paradigm did not provide convincing evidence for the correlation of the hemodynamic variables measured by these two methods. In the current study, we aimed to compare fNIRS and TCD in their performance of differentiating NVC responses evoked by different levels of working memory workload during the same working memory task used as cognitive stimulation. Fourteen healthy young individuals were recruited for this study and performed an n-back cognitive test during TCD and fNIRS monitoring. During TCD monitoring, the middle cerebral artery (MCA) flow was bilaterally increased during the task associated with greater cognitive effort. fNIRS also detected significantly increased activation during a more challenging task in the left dorsolateral prefrontal cortex (DLPFC), and in addition, widespread activation of the medial prefrontal cortex (mPFC) was also revealed. Robust changes in prefrontal cortex hemodynamics may explain the profound change in MCA blood flow during the same cognitive task. Overall, our data support our hypothesis that both TCD and fNIRS methods can discriminate NVC evoked by higher demand tasks compared to baseline or lower demand tasks.


Asunto(s)
Cognición , Acoplamiento Neurovascular , Adulto , Femenino , Hemodinámica , Humanos , Masculino , Memoria a Corto Plazo , Arteria Cerebral Media/diagnóstico por imagen , Arteria Cerebral Media/fisiología , Corteza Prefrontal/irrigación sanguínea , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología
14.
J AOAC Int ; 103(6): 1639-1645, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166400

RESUMEN

BACKGROUND: Comminution reduces the sampling error arising from distributional heterogeneity of the target contaminant/target analyte in the material, facilitating the selection of a more representative test portion. A laboratory sampling method incorporating comminution prior to selection of the test portion (Sampling Method B) was compared to current sampling methods that used no comminution step (Sampling Method A). OBJECTIVE: This required the development of an efficient process for comminution of food samples prior to removal of the test portion for the detection and isolation of Listeria monocytogenes and the enumeration of Staphylococcus species and Escherichia coli. METHOD: From December 2016 to December 2017, 2742 tests were conducted on 778 unique food samples. For all food samples, a test portion (TPA) was first removed using Sampling Method A, and then the remainder of the material was comminuted and a second test portion (TPB) was removed using Sampling Method B and tested alongside the first portion. RESULTS: Across all food matrices and microbial targets, 17 additional targets were detected using only Sampling Method B, and positive detections of target analytes increased by 77% using Sampling Method B from the test portions taken using Sampling Method A. CONCLUSION: Utilizing a sample preparation method that includes a comminution step resulted in an increased number of pathogen detections. HIGHLIGHTS: The introduction of a comminution step in the preparation of food samples for detection of three common microbial contaminants resulted in an increase in the rate of detection of natural contaminates in a variety of ready to eat foods. An efficient aseptic process for commutation that can be adapted to a wide range of laboratory settings was identified.


Asunto(s)
Escherichia coli , Microbiología de Alimentos , Listeria monocytogenes , Staphylococcus , Escherichia coli/aislamiento & purificación , Contaminación de Alimentos/análisis , Listeria monocytogenes/aislamiento & purificación , Staphylococcus/aislamiento & purificación
15.
Geroscience ; 41(5): 495-509, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31676966

RESUMEN

Preclinical studies provide strong evidence that age-related impairment of neurovascular coupling (NVC) plays a causal role in the pathogenesis of vascular cognitive impairment (VCI). NVC is a critical homeostatic mechanism in the brain, responsible for adjustment of local cerebral blood flow to the energetic needs of the active neuronal tissue. Recent progress in geroscience has led to the identification of critical cellular and molecular mechanisms involved in neurovascular aging, identifying these pathways as targets for intervention. In order to translate the preclinical findings to humans, there is a need to assess NVC in geriatric patients as an endpoint in clinical studies. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that enables the investigation of local changes in cerebral blood flow, quantifying task-related changes in oxygenated and deoxygenated hemoglobin concentrations. In the present overview, the basic principles of fNIRS are introduced and the application of this technique to assess NVC in older adults with implications for the design of studies on the mechanistic underpinnings of VCI is discussed.


Asunto(s)
Envejecimiento/fisiología , Circulación Cerebrovascular/fisiología , Acoplamiento Neurovascular/fisiología , Espectroscopía Infrarroja Corta , Anciano , Mapeo Encefálico , Demencia Vascular/diagnóstico , Humanos , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...